Preventing stress corrosion cracking of austenitic stainless steels in chemical plants

by Masao Nakahara
The material presented in this publication has been prepared for the general information of the reader and should not be used or relied on for specific applications without first securing competent advice.

The Nickel Development Institute, its members, staff and consultants do not represent or warrant its suitability for any general or specific use and assume no liability or responsibility of any kind in connection with the information herein.
Preventing stress corrosion cracking of austenitic stainless steels in chemical plants

by Masao Nakahara, Asahi Chemical Industries, Ltd.

1. INTRODUCTION

General-purpose austenitic stainless steels, namely types 304 and 316 (standards and compositions listed in Table 4) are common corrosion-resistant materials of construction in chemical process plants. One corrosion mode that occurs with these materials is stress corrosion cracking (SCC), a type of damage that often causes serious problems in equipment function and safety. This is because SCC occurs relatively frequently, its propagation is often fast, and it is often difficult to detect nondestructively.

This paper discusses cases of SCC that occur with stainless steels in chemical plants and describes the present state, focusing on SCC caused by chlorides and examining what causes SCC and how to prevent it.

2. EXAMPLES OF SCC OF AUSTENITIC STAINLESS STEELS

The results(1) of a study of 80 cases of SCC that occurred in chemical plants that the author became aware of over a span of about ten years are presented.

Figure 1 shows a breakdown of all the examples into the two modes; transgranular stress corrosion cracking (TGSCC) and intergranular stress corrosion cracking (IGSCC). About three-fourths of the examples are TGSCC.

Figure 2 divides the SCC examples into the number and type on the process side and on the non-process side (cooling water environment, atmosphere-side environment, etc.). The largest number of cases of SCC are from environments that contain

![Classification of examples of SCC by mode](image1.png)

![Classification of examples of SCC by environment](image2.png)

(* ESCC: external Stress Corrosion Cracking)
chlorides on the process side, and they all are TGSCC. In addition, a relatively high proportion occur in cooling-water environments and by SCC from the external surface (ESCC), where chlorides are inferred to have played a major role. In these environments IGSCC also occurs.

Figure 3 gives the results classified by the temperature at which SCC occurs for each mode. These data show that TGSCC frequently occurs in the high-temperature region of 80°C and higher, while IGSCC frequently occurs at near-ambient temperatures.

Figure 4 gives the proportion of the occurrence of SCC for different types of austenitic stainless steels. According to this data, the ratio of type 304 to type 316 is 7:3 for TGSCC and 9:1 for IGSCC. This ratio for TGSCC is believed to be higher than the use-ratio of type 316 to type 304 in chemical plants. The reason is thought to be because type 316 is frequently selected for severely corrosive environmental conditions.

Figure 5 shows the distribution of the number of years of service until SCC damage was observed, that is, the useful lifetime. The data indicate that TGSCC frequently occurs within a short period of a year of less, while the occurrence of IGSCC is after considerably longer periods of time.
3. CAUSES AND PREVENTION OF SCC INVOLVING CHLORIDES

3-1. Causes of SCC

Among the modes of SCC, the main cause of IGSCC is believed to be sensitization of the material, with contribution of the environmental component (chloride ions) and of the stress component being relatively small. (However, even in IGSCC, since it represents a form of SCC, the presence of electrolytes on its surface and the existence of chlorides in them are inferred to accelerate the occurrence of IGSCC.)

In the occurrence of TGSCC, the following items are believed to be involved as causes:

Environment:
- chloride ions (abbreviated as Cl⁻)
- pH
- temperature
- oxidizer (such as presence of oxygen or metallic ions in solution)
- presence or absence of crevices (either adhesion or structural crevices)

Material:
- quantity of Ni (alloys having a Ni content of 45% or more, or ferritic stainless steels)
- resistance to crevice corrosion

Stress:
- tensile stress (residual stress during welding, stress during operation)

3-2. Environmental causes

As shown by Nishino and a questionnaire survey by the Society of Chemical Engineers, Japan, Cl⁻ concentration and temperature play critical roles as environmental factors in the occurrence of SCC. From the results of Truman's immersion experiments, Figure 6, pH is also affective. Figure 6 shows that the higher the Cl⁻ concentration and temperature, the more likely SCC will occur; and the lower the pH, the greater is the range of possibility for the occurrence of SCC. These results were obtained from immersion test pieces of type 304 pipe with butt welds in various sets of environmental conditions for up to 13,500 hours. No artificial crevices were formed in the test pieces, and the oxidizer was considered to be the oxygen in solution at equilibrium under atmospheric pressure.

Although the results of Figure 6 and other data hint at the effects of various other factors in the occurrence of SCC, it would be unreasonable to take these data as an absolute standard for the occurrence of SCC and to use the information as the basis for materials selection. The following two cases are examples.

Case 1

SCC was found to occur, starting from the cooling-water side, in a number of heat exchangers about ten years after they first went into service. These were horizontal multi-tube exchangers with process fluid inlet temperature of 60°C. Cooling water flowed on the shell side at a speed of 0.3 m/sec from an open circulation system. The water contained 120 ppm Cl⁻ and a concentration multiple of 5.

The damage was limited to the vicinity of the crevices between baffle plate and tube, and the crevices between tube plate and tube. In many cases the SCC starting point was crevice corrosion as shown in Photo 1, with TGSCC propagation. Also, in those heat exchangers where damage occurred, because
chemical cleaning was needed on the process side, the cooling water on the shell side was drained out two or three times a year and 80°C hot water was rinsed through the inside of the tubes. In heat exchangers made of type 304 having generally the same water quality system but without chemical cleaning, no SCC occurred even though the process inlet temperature was higher.

The operating conditions of these heat exchangers do not exist in the region of SCC occurrence shown in Figure 6 even if the temperature of the type 304 tubing is assumed to rise to the process inlet temperature. Yet, SCC occurred nevertheless. From a comparison with other heat exchangers of the same system, the cause of SCC is believed to be due to the chemical cleaning. That is, during operation, contamination components (slime, sludge, etc.) built up on the shell side of the heat exchange, and during chemical cleaning dried on the surface of the tubes, forming firm crevices. During operation the concentration of chlorides is assumed to

Fig. 6. Effect of Cl⁻ concentration, temperature and pH on type 304 corrosion mode in sodium chloride solution\(^4\)
increase at these cervices, leading to the occurrence of crevice corrosion and then to initiation of SCC.

Table 1 shows the results found when, during five years, sample tubes were placed into the heat exchangers where SCC occurred (see Table 4), and later removed for examination. Crevice corrosion was found in types 304 and 444 but not in type 316. Even under the same conditions of operation, type 316, which has better crevice corrosion resistance, is believed to suppress (retard) the occurrence of SCC and to be a better material for SCC prevention.

![Photo 1. Electron micrograph of metal cross-section showing crevice corrosion SCC](image1)

![Photo 2. Electron micrograph of metal cross-section showing direct penetrating SCC](image2)

Table 1. Results of corrosion tests on stainless steel in a cooling-water environment (*1)

<table>
<thead>
<tr>
<th>Type</th>
<th>Baffle crevices</th>
<th>Tube plate crevices</th>
</tr>
</thead>
<tbody>
<tr>
<td>304 (3 tubes)</td>
<td>Crevice corrosion (*2)</td>
<td>Crevice corrosion</td>
</tr>
<tr>
<td></td>
<td>Maximum depth 0.16 mm (3/24) (*3)</td>
<td>Maximum depth 0.25 mm (5/6)</td>
</tr>
<tr>
<td>316 (1 tube)</td>
<td>None (0/24)</td>
<td>None (0/6)</td>
</tr>
<tr>
<td>444 (1 tube)</td>
<td>None (0/8)</td>
<td>Crevice corrosion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Maximum depth 0.12 mm (1/2)</td>
</tr>
</tbody>
</table>

(*1) Test duration: 5 years. Heat exchange conditions: process fluid inlet temperature 60°C, shell-side water flow, cooling water flow speed 0.3 m/sec, implementation of process-side chemical cleaning (2-3 times/year, 80°C, shell-side falling water)

(*2) Corrosion form: pitting corrosion, no occurrence of SCC found

(*3) Values in ()s show the proportion of occurrence of corrosion in parts subject to the same conditions
As this case shows, in a neutral low-concentration chloride ion environment the occurrence of SCC often propagates from a point of origin caused by crevice corrosion or pitting. It further demonstrates that SCC can occur even in the apparent safe region for the occurrence of SCC indicated in Figure 6.

Case 2

This case is an example of SCC that occurred when selection of the material of construction for a new piece of equipment was being made. The equipment is used for treating resin containing chlorine with fluorine-based solvent. In this process, under the environmental conditions of No. 1 in Table 2, TGSCC occurred extensively. This type of TGSCC progressed directly from the surface as shown in Photo 2 and not via crevice corrosion; it is hereafter called direct penetrating SCC. Also, pitting was found in SUS329J2L.

These results prompted a search for a suitable solvent composition that would give a less corrosive process environment. A new set of environmental conditions were determined, No. 2, and once again corrosion tests by immersion were carried out. No corrosion occurred, not even crevice corrosion, in the second environment.

In this case, the process conditions could be changed so that SCC (and pitting) were checked. Since TGSCC was of the direct penetrating type, measures such as prevention of crevice corrosion are inadequate, and it was considered necessary to drastically change the environment or change the materials of construction.

3.3 Material factors

There are two materials approaches on how to prevent SCC.

i) Fundamental method:

Use an alloy having a Ni content of 45% or more, or a ferritic stainless steel

ii) Retarding methods:

Use a stainless steel or alloy such as type 316, type 329J4L or type 20-25MT: (see Table 4.) (that have good resistance against crevice corrosion)

The Copson diagram, Figure 7, was determined from corrosion tests in an environment of boiling magnesium chloride. It shows that in a high-temperature (about 150°C) chloride environment, SCC neither occurs in materials that contain at least 45% Ni, nor in materials that contain no Ni (ferritic stainless steels). Thus, the

<table>
<thead>
<tr>
<th>Test</th>
<th>Environmental conditions</th>
<th>Results of immersion tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 1</td>
<td>A</td>
<td>Present</td>
</tr>
<tr>
<td>No. 2</td>
<td>B</td>
<td>Absent</td>
</tr>
</tbody>
</table>

Testing conditions: test pieces bent into a U shape, immersed for 100 hours
selection of either of these is considered a rational approach for preventing SCC in many environments. But it is not always clear whether the criterion in Figure 7 will also be applicable for chloride environments in which the temperature exceeds 150°C, and confirmation is considered necessary.

![Graph showing SCC fracture time of Fe-Cr-Ni wire](image)

Fig. 7. SCC fracture time of Fe-Cr-Ni wire in an environment of 42% boiling MgCl₂

On the other hand, when SCC occurs in existing equipment that has been in use for a long period of time (although it depends on the length of time that elapses before it occurs, and on its extent), the cost of changing over to a material that contains at least 45% Ni is prohibitive. Further, in many cases a ferritic stainless steel is not adopted because of its poor weldability. In addition, SCC that occurs over a long period of time often is of the type that starts in a crevice. Thus, even if it is impossible to completely prevent SCC as in Case 1, the measures listed in ii) are sometimes adopted for the purpose of retarding its occurrence for long periods of time.

3.4. Stress factors

Often in stainless steels there is as much welding residual stress or residual stress from processing as the yield stress of the material, and these stresses often are at a higher level than the operating stress. (With tube made of type 329J4L, processing residual stress of about 20 kg/mm² has been measured). In an attempt to reduce these two types of stresses, shot peening, the selection of appropriate welding methods and the improvement of pipe fabrication methods (reduction of processing residual stress) are being tried. But, at present these stress-related measures are often adopted only as a supplementary means as compared with the other approaches involving changing the environment or selecting a more SCC-resistant material. In the future, it is expected that the effects of stress-related measures will become clearer as data is accumulated in chemical plants and elsewhere.

4. CONCLUSION

The foregoing discussion of aspects relating to environment, material, and stress are summarized in Table 3. Even with the same TGSCC, if its mode is of the type via crevice corrosion, its occurrence will be difficult to clarify when selecting a material; there are many cases where the damage becomes apparent only after a relatively long time (such as 5-10 years). Moreover, in cases where
SCC occurs in existing plants, it is difficult to rationally improve the environment or to make a major change in the material (such as to use material that has a Ni content of 45% or more), so measures are adopted that lie within the range of the possible.

On the other hand, when TGSCC of the direct penetrating type occurs, the damage becomes apparent in a relatively short time (several days to a year), and in many cases the extent of the damage is substantial. In such cases it becomes necessary to take radical measures concerning the environment or the material, as in Case 2. Thus, different measures are adopted for prevention of SCC, depending on its mode, the extent of its occurrence, and the importance of the equipment. These factors are classified qualitatively in Table 3.

<table>
<thead>
<tr>
<th></th>
<th>Direct penetrating type stress corrosion cracking</th>
<th>Crevice corrosion mediated stress corrosion cracking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environment</td>
<td>Lowering temperature</td>
<td>Making it difficult for crevices to form</td>
</tr>
<tr>
<td></td>
<td>Lowering Cl⁻ concentration</td>
<td>(example: in a cooling-water environment, increasing the flow speed, changing the route of flow, adding dispersants)</td>
</tr>
<tr>
<td></td>
<td>(example: using pure water for the cooling water)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Raising pH</td>
<td>Corrosion-resistant design</td>
</tr>
<tr>
<td></td>
<td>Reducing oxidativeness</td>
<td>(eliminating structural crevices, eliminating parts that get repeatedly wet and dry out, etc.)</td>
</tr>
<tr>
<td></td>
<td>(removing oxygen in solution, changing type of metallic ions)</td>
<td>Improving environment</td>
</tr>
<tr>
<td></td>
<td>Cathodic corrosion prevention (Al plating)</td>
<td>(lowering temperature, reducing Cl⁻ concentration)</td>
</tr>
<tr>
<td></td>
<td>Corrosion-resistant design</td>
<td>Cathodic corrosion prevention (Al plating)</td>
</tr>
<tr>
<td></td>
<td>(eliminating structural crevices, eliminating parts that get repeatedly wet and dry out, etc.)</td>
<td></td>
</tr>
<tr>
<td>Material</td>
<td>Using 45% + Ni alloys</td>
<td>Using pitting-resistant materials</td>
</tr>
<tr>
<td></td>
<td>Using ferritic stainless steels</td>
<td>(type 316, type 20-25MT:)</td>
</tr>
<tr>
<td></td>
<td>Using mild steels (in some cases)</td>
<td>Using two-phase (duplex) stainless steels</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(type 329J4L)</td>
</tr>
<tr>
<td>Stress</td>
<td>Using member material that has low processing residual stress (low-residual-stress pipes)</td>
<td>Shot-peening the welds</td>
</tr>
<tr>
<td></td>
<td>Selecting correct welding methods</td>
<td>Heat treatment after welding (risk of sensitization)</td>
</tr>
<tr>
<td></td>
<td>(water-flow cooling)</td>
<td></td>
</tr>
<tr>
<td>Remarks</td>
<td>When material for a new plant is being selected, or shortly after the plant being operation</td>
<td>After long period (at least several years) of use in an existing plant</td>
</tr>
</tbody>
</table>
Table 4. Stainless alloys standards and main compositions (wt. %)

<table>
<thead>
<tr>
<th>Type</th>
<th>JIS</th>
<th>UNS</th>
<th>C</th>
<th>Ni</th>
<th>Cr</th>
<th>Mo</th>
<th>Else compo.</th>
</tr>
</thead>
<tbody>
<tr>
<td>304</td>
<td>SUS304</td>
<td>S30400</td>
<td><0.08</td>
<td>8.00-10.5</td>
<td>18.00-20.00</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>316</td>
<td>SUS316</td>
<td>S31600</td>
<td><0.08</td>
<td>10.00-14.00</td>
<td>16.00-18.00</td>
<td>2.00-3.00</td>
<td></td>
</tr>
<tr>
<td>20-25MTi</td>
<td>–</td>
<td>N08320</td>
<td><0.05</td>
<td>25.00-27.00</td>
<td>21.00-23.00</td>
<td>4.00-6.00</td>
<td>Ti>Cx4</td>
</tr>
<tr>
<td>444</td>
<td>SUS444</td>
<td>S44400</td>
<td><0.025</td>
<td>–</td>
<td>17.00-20.00</td>
<td>1.75-2.50</td>
<td>Ti, Nb, Zr</td>
</tr>
<tr>
<td>329J4L</td>
<td>SUS329J4L</td>
<td>S31260</td>
<td><0.03</td>
<td>4.50-7.50</td>
<td>22.00-26.00</td>
<td>2.50-4.00</td>
<td>N:0.08-0.30</td>
</tr>
</tbody>
</table>

REFERENCES

BIBLIOGRAPHY

The Nickel Development Institute is an international nonprofit organization serving the needs of people interested in the application of nickel and nickel-containing materials.

Members of NiDI
Companhia Níquel Tocantins
Empresa de Desenvolvimento de Recursos Minerais “CODEMIN” S.A.
Falconbridge Limited
Inco Limited
Morro do Níquel S.A.
Nippon Yakin Kogyo Co., Ltd.
NRNQ (a limited partnership)
Outokumpu Oy
P.T. International Nickel Indonesia
Pacific Metals Co., Ltd.
QNI Limited
Sherritt Gordon Limited
Shimura Kako Company, Ltd.
Sumitomo Metal Mining Co., Ltd.
Tokyo Nickel Company Ltd.
Western Mining Corporation Limited

North America
Nickel Development Institute
214 King Street West • Suite 510
Toronto, Ontario
Canada M5H 3R6
Telephone 416 591 7999
Fax 416 591 7987
Telex 06 218 565

Europe
Nickel Development Institute
42 Weymouth Street
London, England W1N 3LO
Telephone 071 493 7899
Fax 071 493 1555
Telex 51 261 286

Nickel Development Institute
European Technical Information Centre
The Holloway, Axedechurch
Birmingham, England B48 7QB
Telephone 0527 584 777
Fax 0527 585 562
Telex 51 337 125

Japan
Nickel Development Institute
11-3, 5-chome, Shimbashi
Minato-ku, Tokyo, Japan
Telephone 81 3 3436 7953
Fax 81 3 3436 7734
Telex 72 242 2386

Central & South America
Nickel Development Institute
c/o Instituto de Metais Não Ferrosos
Av. 9 de Julho, 4015 • 01407-100
São Paulo-SP, Brazil
Telephone 011 887 2033
Fax 011 885 8124
Telex 38 112 5479

India
Indian Nickel Development Institute
c/o India Lead Zinc Information Centre
Jawahar Bhavan
96 Tughlaqabad Institutional Area
Mehrauli-Badarpur Road
New Delhi 110 062, India

Australasia
Nickel Development Institute
P.O. Box 28, Blackburn South
Victoria 3130, Australia
Telephone 61 3 879 7558
Mobile 61 3 346 608
Fax 61 3 894 3403

South Korea
Nickel Development Institute
Olympia Building, Room 811
196-7 Jamisil-Dong, Songpa Ku
Seoul 138 229, South Korea
Telephone 82 2 419 5465
Fax 82 2 419 2088

Printed on recycled paper in Japan