Dr. Ilias Belharouak is the head of electrification and energy storage at the Oak Ridge National Laboratory. In this Battery Chat, he talks to Parri Adeli about the various energy storage topics his group are investigating including a new class of cathodes that they developed recently and its scale-up path.
A new generation of designers, materials specifiers, architects and engineers is being introduced to the wealth of technical information curated by the Nickel Institute. An archive of technical guides and know-how for working with nickel-containing materials, including stainless steel, that has been built over thirty years is now being updated and made freely available.
Professor Jeff Dahn, at the Department of Physics and Atmospheric Science, Dalhousie University in Nova Scotia, Canada explains how single crystal technology is proving to be a promising solution to the challenge of overcoming range anxiety which is high on the agenda of electric vehicle manufacturers and battery developers.
If you’re like me and predictive text has led to some awkward if not amusing moments, you might be sceptical about Artificial Intelligence (AI). But its achievements are already overwhelming and changing, even protecting, our lives in many sectors.
New advances in the use of Artificial Intelligence have the potential to speed up the process of alloy development.
Ever-tightening sulphur oxide (SOx) emission regulations are increasing the use of marine scrubbers globally. Scrubbers operate in a highly corrosive environment and require the resilience of nickel-containing alloys to prevent failure.
Nickel’s role in enabling technologies is not always common knowledge. Yet its versatile properties present great opportunity for the nickel industry.
Most nickel production is destined for stainless steel. But a significant 8% is used in the production of alloy steels which are needed to deliver specific characteristics for specialised and often critical applications.